Skip to contents

The reviser package provides tools to manipulate and analyze vintages of time series data subject to revisions. This vignette demonstrates how to get started and structure your data according to the package’s conventions.

# The packages used in this vignette
library(reviser)
library(dplyr)
library(tsbox)

Package conventions


The most conventional way is to represent vintage data in a real-time data matrix, where each row represents a time period and each column represents successive releases of the data. This known as the wide format. The package supports data in wide format. and assumes that the data is organized in the following columns:

  • time, the time period
  • Publication dates in 'yyyy-mm-dd' format or release numbers as release_#

While wide format is practical for inspection, data manipulation is often easier in long (tdy) format, which consists of:

  • time, the time period
  • pub_date and/or release, the publication date or release number
  • value, the reported value.
  • id, an optional column to distinguish between different series

For illustration, the package provides a dataset in long format, gdp. Below, we examine GDP growth rates for the US and Euro Area during the 2007–2009 financial crisis.

# Example long-format US GDP data
data("gdp")
gdp_us_short <- gdp %>% 
  dplyr::filter(id == "US") %>%
  ts_pc() %>%
  filter(
    pub_date >= as.Date("2007-01-01"),
    pub_date < as.Date("2009-01-01"),
    time  >= as.Date("2007-01-01"),
    time < as.Date("2009-01-01")
  )

# Example long-format EA GDP data
gdp_ea_short <- gdp %>%
  dplyr::filter(id == "EA") %>%
  ts_pc() %>%
  filter(
    pub_date >= as.Date("2007-01-01"),
    pub_date < as.Date("2009-01-01"),
    time  >= as.Date("2007-01-01"),
    time < as.Date("2009-01-01")
  )

head(gdp_ea_short)
#> # A tibble: 6 × 4
#>   time       pub_date   value id   
#>   <date>     <date>     <dbl> <chr>
#> 1 2007-01-01 2007-04-01 0.603 EA   
#> 2 2007-01-01 2007-07-01 0.707 EA   
#> 3 2007-04-01 2007-07-01 0.349 EA   
#> 4 2007-01-01 2007-10-01 0.780 EA   
#> 5 2007-04-01 2007-10-01 0.310 EA   
#> 6 2007-07-01 2007-10-01 0.714 EA

Convert Long to Wide Format


To transform a dataset from long format to wide format, use vintages_wide(). The function requires columns time and value, along with either pub_date or release. An optional id column can be used to distinguish between multiple series.

# Convert wide-format data to long format
wide_ea_short <- vintages_wide(gdp_ea_short)
head(wide_ea_short)
#> $EA
#> # A tibble: 7 × 8
#>   time       `2007-04-01` `2007-07-01` `2007-10-01` `2008-01-01` `2008-04-01`
#>   <date>            <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
#> 1 2007-01-01        0.603        0.707        0.780        0.789        0.745
#> 2 2007-04-01       NA            0.349        0.310        0.274        0.334
#> 3 2007-07-01       NA           NA            0.714        0.750        0.721
#> 4 2007-10-01       NA           NA           NA            0.382        0.352
#> 5 2008-01-01       NA           NA           NA           NA            0.800
#> 6 2008-04-01       NA           NA           NA           NA           NA    
#> 7 2008-07-01       NA           NA           NA           NA           NA    
#> # ℹ 2 more variables: `2008-07-01` <dbl>, `2008-10-01` <dbl>

Convert Wide to Long Format


To revert to long format, use vintages_long(). The function expects column names in wide format to be valid dates or contain the string "release".

# Convert back to long format
long_ea_short <- vintages_long(wide_ea_short)
head(long_ea_short)
#> # A tibble: 6 × 4
#>   time       pub_date   value id   
#>   <date>     <chr>      <dbl> <chr>
#> 1 2007-01-01 2007-04-01 0.603 EA   
#> 2 2007-01-01 2007-07-01 0.707 EA   
#> 3 2007-01-01 2007-10-01 0.780 EA   
#> 4 2007-01-01 2008-01-01 0.789 EA   
#> 5 2007-01-01 2008-04-01 0.745 EA   
#> 6 2007-01-01 2008-07-01 0.745 EA

Handling Multiple Series with id


If an id column is present, vintages_wide() returns a list with one dataset per unique id. Conversely, vintages_long() maintains the id column to distinguish between series.

gdp_short <- bind_rows(
  gdp_ea_short %>% mutate(id = "EA"),
  gdp_us_short %>% mutate(id = "US")
)
gdp_wide_short <- vintages_wide(gdp_short)
head(gdp_wide_short)
#> $EA
#> # A tibble: 7 × 8
#>   time       `2007-04-01` `2007-07-01` `2007-10-01` `2008-01-01` `2008-04-01`
#>   <date>            <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
#> 1 2007-01-01        0.603        0.707        0.780        0.789        0.745
#> 2 2007-04-01       NA            0.349        0.310        0.274        0.334
#> 3 2007-07-01       NA           NA            0.714        0.750        0.721
#> 4 2007-10-01       NA           NA           NA            0.382        0.352
#> 5 2008-01-01       NA           NA           NA           NA            0.800
#> 6 2008-04-01       NA           NA           NA           NA           NA    
#> 7 2008-07-01       NA           NA           NA           NA           NA    
#> # ℹ 2 more variables: `2008-07-01` <dbl>, `2008-10-01` <dbl>
#> 
#> $US
#> # A tibble: 7 × 8
#>   time       `2007-04-01` `2007-07-01` `2007-10-01` `2008-01-01` `2008-04-01`
#>   <date>            <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
#> 1 2007-01-01        0.162        0.150        0.150        0.150        0.150
#> 2 2007-04-01       NA            0.974        0.942        0.942        0.942
#> 3 2007-07-01       NA           NA            1.21         1.20         1.20 
#> 4 2007-10-01       NA           NA           NA            0.156        0.144
#> 5 2008-01-01       NA           NA           NA           NA            0.224
#> 6 2008-04-01       NA           NA           NA           NA           NA    
#> 7 2008-07-01       NA           NA           NA           NA           NA    
#> # ℹ 2 more variables: `2008-07-01` <dbl>, `2008-10-01` <dbl>

Extracting Releases


Once data follows the package conventions, it can be analyzed further. A common task is assessing the first release of data, which corresponds to the diagonal of the real-time data matrix. Use get_nth_release() to extract the nth release. This function is 0-indexed, so the first release corresponds to n = 0.

# Get the first release and check in wide format
gdp_releases <- get_nth_release(gdp_short, n = 0)
vintages_wide(gdp_releases)
#> Warning: Ignoring columns: release
#> $EA
#> # A tibble: 7 × 8
#>   time       `2007-04-01` `2007-07-01` `2007-10-01` `2008-01-01` `2008-04-01`
#>   <date>            <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
#> 1 2007-01-01        0.603       NA           NA           NA           NA    
#> 2 2007-04-01       NA            0.349       NA           NA           NA    
#> 3 2007-07-01       NA           NA            0.714       NA           NA    
#> 4 2007-10-01       NA           NA           NA            0.382       NA    
#> 5 2008-01-01       NA           NA           NA           NA            0.800
#> 6 2008-04-01       NA           NA           NA           NA           NA    
#> 7 2008-07-01       NA           NA           NA           NA           NA    
#> # ℹ 2 more variables: `2008-07-01` <dbl>, `2008-10-01` <dbl>
#> 
#> $US
#> # A tibble: 7 × 8
#>   time       `2007-04-01` `2007-07-01` `2007-10-01` `2008-01-01` `2008-04-01`
#>   <date>            <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
#> 1 2007-01-01        0.162       NA            NA          NA           NA    
#> 2 2007-04-01       NA            0.974        NA          NA           NA    
#> 3 2007-07-01       NA           NA             1.21       NA           NA    
#> 4 2007-10-01       NA           NA            NA           0.156       NA    
#> 5 2008-01-01       NA           NA            NA          NA            0.224
#> 6 2008-04-01       NA           NA            NA          NA           NA    
#> 7 2008-07-01       NA           NA            NA          NA           NA    
#> # ℹ 2 more variables: `2008-07-01` <dbl>, `2008-10-01` <dbl>

# The function uses the pub_date column by default to define columns in wide 
# format. Specifying the `names_from` argument allows to use the release column.
gdp_releases <- get_nth_release(gdp_short, n = 0:1)
vintages_wide(gdp_releases, names_from = "release")
#> Warning: Ignoring columns: pub_date
#> $EA
#> # A tibble: 7 × 3
#>   time       release_0 release_1
#>   <date>         <dbl>     <dbl>
#> 1 2007-01-01     0.603     0.707
#> 2 2007-04-01     0.349     0.310
#> 3 2007-07-01     0.714     0.750
#> 4 2007-10-01     0.382     0.352
#> 5 2008-01-01     0.800     0.700
#> 6 2008-04-01    -0.200    -0.170
#> 7 2008-07-01    -0.194    NA    
#> 
#> $US
#> # A tibble: 7 × 3
#>   time       release_0 release_1
#>   <date>         <dbl>     <dbl>
#> 1 2007-01-01     0.162     0.150
#> 2 2007-04-01     0.974     0.942
#> 3 2007-07-01     1.21      1.20 
#> 4 2007-10-01     0.156     0.144
#> 5 2008-01-01     0.224     0.218
#> 6 2008-04-01     0.810     0.699
#> 7 2008-07-01    -0.129    NA

To assess data accuracy, we need to define the final release. Since many statistical agencies continue revising data indefinitely, the latest release is often used as a benchmark.

Use get_nth_release(n = "latest") to extract the most recent vintage.

# Get the latest release
gdp_final <- get_nth_release(gdp_short, n = "latest")
vintages_wide(gdp_final)
#> Warning: Ignoring columns: release
#> $EA
#> # A tibble: 7 × 2
#>   time       `2008-10-01`
#>   <date>            <dbl>
#> 1 2007-01-01        0.728
#> 2 2007-04-01        0.477
#> 3 2007-07-01        0.555
#> 4 2007-10-01        0.354
#> 5 2008-01-01        0.661
#> 6 2008-04-01       -0.170
#> 7 2008-07-01       -0.194
#> 
#> $US
#> # A tibble: 7 × 2
#>   time       `2008-10-01`
#>   <date>            <dbl>
#> 1 2007-01-01       0.0123
#> 2 2007-04-01       1.18  
#> 3 2007-07-01       1.17  
#> 4 2007-10-01      -0.0430
#> 5 2008-01-01       0.218 
#> 6 2008-04-01       0.699 
#> 7 2008-07-01      -0.129

Some agencies fix their data after a certain period (e.g., Germany finalizes GDP data in August four years after the initial release). The function get_fixed_release() extracts these fixed releases.

gdp_ea_longer <- gdp %>% 
  dplyr::filter(id == "EA") %>%
  ts_pc() %>% 
  filter(
    time >= as.Date("2000-01-01"),
    time < as.Date("2006-01-01"),
    pub_date >= as.Date("2000-01-01"),
    pub_date <= as.Date("2006-01-01")
    )

# Get the release from October four years after the initial release
gdp_releases <- get_fixed_release(
  gdp_ea_longer, 
  years = 4, 
  month = "October"
  )
gdp_releases
#> # A tibble: 8 × 4
#>   time       pub_date     value id   
#>   <date>     <date>       <dbl> <chr>
#> 1 2000-01-01 2004-10-01 0.905   EA   
#> 2 2000-04-01 2004-10-01 0.917   EA   
#> 3 2000-07-01 2004-10-01 0.387   EA   
#> 4 2000-10-01 2004-10-01 0.585   EA   
#> 5 2001-01-01 2005-10-01 0.723   EA   
#> 6 2001-04-01 2005-10-01 0.131   EA   
#> 7 2001-07-01 2005-10-01 0.199   EA   
#> 8 2001-10-01 2005-10-01 0.00809 EA

Visualizing Vintage Data


The reviser package provides simple and flexible tools for visualizing real-time vintages. The primary function for this is plot_vintages(), which supports multiple plot types, including line plots, scatter plots, bar plots, and boxplots. It returns a ggplot2 object, allowing for further customization with the ggplot2 package. This is a simple function allowing to visualize real-time data in a few lines of code. However, it is only possible to plot the data along one dimension (either pub_date, release or id).

To use plot_vintages(), provide a data frame containing:

  • A time column (representing the observation period),
  • A value column (containing the reported data),
  • A column indicating the publication date (pub_date) or release number (release), which determines the dimension along which the data is visualized.

For example, to visualize how GDP estimates evolved over time, you can create a line plot comparing different vintages:

# Line plot showing GDP vintages over the publication date dimension
plot_vintages(
  gdp_us_short,
  title = "Real-time GDP Estimates for the US",
  subtitle = "Growth Rate in %"
  )


# Line plot showing GDP vintages over the release dimension
gdp_releases <- get_nth_release(gdp_us_short, n = 0:3)
plot_vintages(gdp_releases, dim_col = "release")

By default, if dim_col (the dimension along which vintages are plotted) contains more than 30 unique values, only the most recent 30 are displayed to maintain readability.

# Line plot showing GDP vintages over the publication date dimension
plot_vintages(
  gdp_ea_longer,
  type = "boxplot",
  title = "Real-time GDP Estimates for the Euro Area",
  subtitle = "Growth Rate in %"
  )


# Line plot showing GDP vintages over id dimension
plot_vintages(
  gdp %>% 
    ts_pc() %>% 
    get_latest_release() %>%
    na.omit(), 
  dim_col = "id",
  title = "Recent GDP Estimates",
  subtitle = "Growth Rate in %"
  )

For further customization, you can apply custom themes and color scales using:

These functions ensure a consistent visual style tailored for vintage data analysis.

Analyzing Data Revisions and Releases


After defining the final release, we can analyze revisions and releases in multiple ways: